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ABSTRACT

Deep neural networks (DNNs) have been widely applied in the
field of artificial intelligence, e.g., natural language processing, com-
puter vision, etc. Researchers and industry practitioners typically
use GPU to train complex hundred-layers deep networks. However,
as the networks going wider and deeper, the limited GPU memory
becomes a significant bottleneck, restricting the size of networks to
be trained. In the training of DNNs, the intermediate layer outputs
are the major contributors to the memory footprint. Offloading
and prefetching feature maps is one of the crucial techniques to
overcome the GPU memory shortage by utilizing the CPU DRAM
as an external buffer for the GPU. However, we find that the layer-
by-layer asynchronous approach cannot be effectively applied to
the overlap between communication and computation, particularly
for nonlinear networks. Furthermore, the default memory manage-
ment policy could cause high GPU memory fragmentation for the
networks with complex nonlinearities. Based on these observations,
we adopt an efficient graph analysis and exploit the layered depen-
dency structures to improve the overlap ratio. To achieve minimal
memory fragmentation, we design a Group Tensors By Mobility
(GTBM) placement policy to allocate tensors on the proposed uni-
fied memory pool for data structures with varied data sizes and
dynamic dependencies. We implement and evaluate our system,
Dymem, on several linear and nonlinear networks. Compared with
vDNN and SuperNeurons, our proposed approach can achieve mem-
ory cost reduction by up to 31%. The dependency-aware strategy
can improve the end-to-end throughput for nonlinear networks by
up to 42%.

CCS CONCEPTS

« Software and its engineering — Memory management; «
Computer systems organization — Multiple instruction, single
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1 INTRODUCTION

Deep learning (DL) [24] has achieved great success in various do-
mains such as image classification [35], natural language process-
ing [8], object detection [36], speech recognition [17], etc. Obtaining
accurate deep learning models is a computation-intensive process,
which requires large amounts of data and substantial computing
capacity. Previous studies have shown that wider and deeper DNNs
can significantly increase the model performance [23][3]. Recently,
nonlinear architectures have been proposed to further improve the
quality of image recognition tasks [34][13]. However, the limited
size of GPU DRAM has been a major bottleneck for researchers
to explore deeper and wider DNNs for better generalization per-
formance. For example, it is reported that VGG-16 [32], which is
composed of 16 computation-intensive convolution layers, requests
a total of 28GB of memory usage for batch size 256 [4]. A repre-
sentative nonlinear network, Inception-V4 requests up to 45GB
memory to keep the entire network on the GPU in training [5].
However, the largest GPU memory capacity offered by the com-
mercial NVIDIA Volta architecture so far is 32GB [2]. The memory
shortage of GPU limits deep learning practitioners to deploy wider
and deeper DNNs. There are many other system challenges for
training deep neural networks. In this paper, we focus on memory
optimization for nonlinear networks.

Many approaches have been proposed to reduce the GPU mem-
ory footprint of DNN training. However, these solutions have their
limitations. For example, most prior works propose reducing the
model size to reduce the memory footprint. However, this strategy
either provides low memory footprint reduction or results in a
loss in training accuracy [14][15]. Firstly, in DNN training, parame-
ter weights only account for a small fraction of the total memory
footprint. In training, intermediate feature maps are the primary
contributor to the significant increase in memory footprint in DNN
training. These intermediate values should be stored/stashed in the
forward pass so that they can be reused later in the backward pass.
Additionally, approaches that apply lower precision computations
for DNN training, mostly in the context of ASICs and FPGAs, either
do not target feature maps (and thus achieve low memory footprint
reduction) or result in reduced training accuracy [20]. Memory
compression [10] and data encoding [19] is another approach to
reduce the GPU memory requirement for training, which, however,
introduces high-performance overhead. State-of-the-art memory
footprint reduction approaches for training swap data structures
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back and forth between CPU and GPU memory [28][38]. How-
ever, existing swapping approaches are inefficient in reducing the
memory footprint for training.

Inspired by the fact that DNN training follows a series of layer-
wise computations, vVDNN [28] and SuperNeurons [38] propose to
virtualize the memory usage of deep neural networks across both
GPU and CPU memories. Considering that GPU can only process
one layer at any given time, it is not necessary to overprovision the
memory allocation to accommodate the entire neural network on
the GPU. vDNN and SuperNeurons release or move data structures,
particularly the intermediate feature maps, between CPU and GPU,
by exploiting the inter-layer dependencies and reuse patterns of
DNNs. However, those techniques are not well-tuned to address the
dependency and memory variations in nonlinear networks. Firstly,
the core idea of vDNN and SuperNeurons is to offload data of one
network layer when it is not required in the near future and can
be released from GPU DRAM, saving space for other layers. The
offloaded data is brought back to the GPU when needed in the
backward pass. It can achieve optimal performance if the communi-
cation between CPU and GPU can be well hidden by computation
to utilize the bandwidth. However, we observe that offloading data
structures from the GPU to CPU or prefetching data back to GPU
from CPU layer by layer brings significant inefficiency. For example,
transfer time can be longer or shorter than the forward compu-
tation time across layers so that the communication can only be
partially overlapped with the computation. Usually, the communi-
cation time is much longer than the computation time in Pooling
layers. In contrast, the computation time is usually much longer
than the communication time in convolution layers. Specifically,
for nonlinear blocks, where there are join or fork connections, more
benefit can be earned by aggressively advancing the computation
in the forward pass or the prefetching operations in the backward
pass. Secondly, none of the existing work presents an efficient solu-
tion to handle the memory fragmentation problem for nonlinear
networks. Different from linear networks, which follow a simple
and fixed execution pattern, causing negligible memory wastage,
nonlinear networks exhibit varied dependencies and dynamic ref-
erences. As a result, those complex nonlinear blocks, which has
different data size, varied resident duration, and dynamic reference
counts, interleave with layers which have simple dependencies.

We demonstrate that the default memory management can lead
to higher fragmentation because the released memory regions can-
not be coalesced into a larger one, resulting in free but usable space.
Overall, we propose and design Dymem, a novel approach for train-
ing nonlinear networks. Instead of using a layer-by-layer strategy,
Dymem adopts a more greedy asynchronous solution to maximize
the DRAM bandwidth, balancing memory usage, and performance
improvement. Furthermore, we first analyze the root cause of GPU
memory fragmentation in DNN training. Then, we design a Group
Tensors By Mobility (GTBM) placement policy to allocate tensors
on the proposed unified memory pool based on mobility, exploiting
the dependencies, and reuse distances. In a nutshell, we make the
following technical contributions:

e We empirically study and demonstrate the inefficiency of
memory swapping and memory allocation solutions in exist-
ing works. Based on the observations, we motivate the need
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Figure 1: The breakdown of memory footprint in DNN train-
ing for different networks (GB).
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(a) Forward pass. (b) Backward pass.

Figure 2: Forward and backward computation. X, Y, dX and
dY are input feature maps, output feature maps, output gra-
dient maps and input gradient maps respectively.

for dependency-aware memory management for nonlinear
networks.

e We present a memory-efficient graph analysis to construct
an execution order for nonlinear networks and propose a
dynamic offload/prefetch strategy to maximize the perfor-
mance and usage of bandwidth.

e We design the first unified memory pool for nonlinear net-
works and propose a Group Tensors By Mobility (GTBM)
placement policy to conserve contiguity for different tensors
based on the newly defined tensor mobility.

e We implement Dymem to evaluate various nonlinear DNNs
and perform comprehensive evaluations with various depths.
It achieves memory cost reduction by up to 31% and improves
the end-to-end throughput for nonlinear networks by up to
42%.

The rest of this paper is organized as follows. Section 2 gives
background and motivations on memory management for nonlinear
DNNs . Section 3 describes the detailed system design and solution to
schedule and manage tensor allocation on GPU. Section 4 presents
the experimental methodology, and Section 5 reports the evaluation
results. Section 6 reviews related work. Section 7 concludes the

paper.

2 BACKGROUND AND MOTIVATION

DNNs typically composes of an input and output layer with multiple
hidden layers in between. Due to the limited GPU memory capacity,
efficient memory management is important to run deeper and wider
DNNs on GPU. This section summarizes the DNN models, current
memory management optimization technique and motivates our
work to overcome existing limitations.

2.1 DNNs Training on GPUs

DNN training is based on a set of inputs and obtained outputs. The
training process consists of two phases: forward and backward
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Figure 3: Schema of Inception-v4 network.

passes [25][29]. Specifically, the backward propagation algorithm is
to propagate the error and search the gradient of the loss function
that can be applied to adjust the parameters towards improving
accuracy [26]. It consists of four types of data structure in the
DNN training: feature maps, weights, gradients, and workspace.
Feature maps are the intermediate results that are consumed in
the following forward or backward layers. Gradient maps are the
intermediate results that are generated in the backward pass and
consumed by the dependent layers. Weight value decides how much
influence the input will have on the output. The workspace is the
intra-layer storage to speed up the layer computation. In particular,
the workspace requires additional but temporary GPU DRAM to
achieve better performance of the Convolution algorithm. In the
forward pass, the input feature maps X are fed to the current layer
in the forward direction through the network. Each hidden layer
accepts the input data, processes it as per the activation function,
and passes its output to the successive layer. Nonlinear networks
contain one-to-many (fork) and many-to-one (join) inter-layer de-
pendencies. For example, feature maps X from layer [ — 2 and layer
I — 11 are joined as the input for layer [, as shown in Figure 2(a).
Backward propagation computes the gradient in the weight space
of a feedforward neural network, with respect to a loss function.
Typically, in a backward calculation, a layer requires it stashed input
feature maps X, output feature maps Y, and input gradient maps
dY to obtain the output gradient maps dX, which can be shown
in Figure 2(b). The backward propagation can only be performed
when all of these required data structures are available on GPU.
Traditional Convolution Neural Networks (CNN) typically con-
sists of several basic building layers, including Convolution (CONV),
Pooling (POOL), Activation (ACT), Softmax, Fully Connected (FC),
Batch Normalization (BN), and Dropout layers. A linear neural
network is structured as a sequence of independent and inter-
connected instances. Recently, several nonlinear networks, such
as Inception V4 [34] and ResNet [16], have been proposed to im-
prove the state-of-the-art performance of image classification fur-
ther. Training the elaborate neural network exhibits significant
challenges considering the limited GPU memory. To understand
the memory consumption behavior of DNN training, we conduct
a study on GeForce GTX TITAN X GPU with six representative
CNNs . Figure 1 shows the breakdown of the GPU memory foot-
print. It can be learned that the GPU memory tends to be mostly
occupied by feature maps. For example, more than 90% of GPU
DRAM is required by Inception V4. Furthermore, it is a waste to
reside those feature maps on GPU memory even though they have
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Figure 4: Synchronization w/i and w/o barrier.

future but distant dependencies, especially for the very deep neural
networks. Thus, the intermediate feature maps are the key factors
for optimizing memory usage in DNN training.

2.2 Nonlinearities in DNNs

For linear networks, data is sequentially propagated in both the
forward and backward passes, following a fixed sequential execu-
tion pattern. Compared with linear networks, nonlinear networks
have a high degree of dependency variations. To illustrate these, we
use a representative nonlinear block from Inception-V4 [34] as an
example, which is shown in Figure 3. There are two simple nonlin-
ear connections: fan and join. In this example, the fan connection
creates four branches after layer ly. Each of them has a different
number of layers. Each branch has to finish its computation before it
reaches the join connection, i.e., layer ly. Nowadays, a deep nonlin-
ear network could have hundreds of fan and join connections inside
the network, resulting in a complex network architecture [18]. Note
that the GPU can only process a single layer’s computation at any
given time due to such inter-layer data dependencies. In terms of
memory allocation, care should be taken because, in nonlinear net-
works, multiple layers consume the output feature maps from a
previously processed layer in a fan connection. For example, the
output feature maps from layer [y can only be released from GPU
memory until layers Iy, Iz, I3, and l4 have been propagated. Similarly,
in the join connection, all the output feature maps from preceding
layers should reside on the GPU until their final consumer has
completed the propagation. These nonlinear variations complicate
runtime resource management, which requires a more efficient
solution.

2.3 Motivation for Efficient GPU Memory
Management

2.3.1  Memory Offload/Prefetch for DNNs. Several memory-reduction
techniques have been proposed to address the problem of limited
GPU resident memory. For example, vDNN [28] and Superneu-
rons [38] choose to offload selected layers to the preallocated pinned
CPU memory and prefetch these data back to GPU when required.
Typically, in the forward pass, the input feature maps X from the
preceding layer can be offloaded to CPU memory if there is no more
dependency, after which these data can be released from the GPU
memory. The runtime uses two independent processes to complete
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Figure 5: Computation and communication time for differ-
ent layers in forward and backward pass.

the computation and communication, which enables the CPU-to-
GPU data transfers to overlap with the computation asynchronously.
In the backward pass, for those offloaded layers, the runtime should
bring the feature tensors X back to the GPU DRAM before the back-
ward dependent layer starts its propagation. The prefetch operation
for layer m can be overlapped with the computation of layer [ in the
backward pass, where [ > m. Ideally, this design can maximize the
performance by hiding the communication by the computation time.
To ensure the safety of parallel streams, they enforce a synchro-
nization at the end of each layer, which means the communication
and computation stream cannot advance each other in both the
backward and forward passes, as shown in Figure 4(a). However,
this design largely depends on the communication/computation
ratio. It works well for the linear network, e.g., VGG-16 [32], which
consists of twelve computation-intensive convolution layers. The
offload/prefetch operation can be well hidden because convolution
layers require longer computation time than transfer. This is inef-
ficient, particularly for nonlinear networks. To demonstrate this,
Figure 5 presents the communication and computation time for ten
layers in both the forward and backward pass of GoogleNet [34].
From the Figure, f5’s computation time is much lower compared to
offloading time, while the next layer’s forward computation time
is higher than the communication time. If f5’s input is decided to
be offloaded, then it is not necessary to wait for the offloading of
f5 before starting the next layer’s computation. A more efficient
synchronization without a barrier is shown in Figure 4. Similarly,
in the backward pass, when the layer b7 is being propagated, the
prefetching operation for layer bs can be initiated after the transfer
of layer [ is finished. Secondly, the backward pass of each layer
requires memory space for gradients input and output maps besides
input and output feature maps compared with forward. Hence, in
the forward pass, its peak memory requirement is not higher than
the backward pass if this aggressive strategy is adopted to advance
computation. However, care should be taken in the backward pass
because aggressively prefetching data does not always bring the
benefit. These observations motivate us to propose a more effi-
cient memory scheduling strategy to balance memory saving and
performance.

2.3.2  GPU memory fragmentation. Training a deep DNN on GPU
with limited memory results in frequently caching and freeing ten-

sors in a training iteration. To avoid the nontrivial allocation/deallocation
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Figure 6: GPU memory allocation process.
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Figure 7: 400 represents the memory request. (4) represents
the reference counts. White blocks represent free regions,
which can be coalesced if they are contiguous while grey
blocks represent occupied regions.

overhead from using the native CUDA API, cudaMalloc, and cudaFree,
GPU memory pool is always adopted as an effective memory opti-
mization technique [38][28]. It preallocates a continuous chunk of
memory as a shared memory pool and takes over memory manage-
ment from the operating system. The preallocated memory pool
returns a list of allocated but empty addresses. For an allocation
request, the memory pool finds the first node with enough free
memory from the empty list. After that, it updates the available
list and the occupied list to track memory usage. For a deallocation
request, the memory pool locates the node in the allocated list with
the hash table, and then the pool puts the node back to the empty
list. The sequences of allocation/free do not affect training but can
impact the amount of fragmentation. For example, memory for the
input of the layer to be prefetched could be allocated before/after
allocating space for gradients of the input of the layer to be propa-
gated in the backward pass. Figure 6 demonstrates the allocation
process of CNMeM [1], which is a GPU memory pool developed by
Nvidia. We allocate three tensors on the GPU, which require 512,
512, and 1024MB GPU memory, respectively. Then tensor ty and t»
are freed from GPU. From the log information 6(a), we can see that
coalescing operations can combine available contiguous regions
into a lager page in the same virtual space. However, the released
region for ty cannot coalesce with the other available regions be-
cause they are not in the continuous address, which is illustrated in
Figure 6(b). This buffering and paging strategies work at the coarse
memory granularity, which results in inefficiencies for nonlinear
networks whose data sizes and dependencies vary significantly.
Case study: Figures 7 represent two simple examples of linear
and nonlinear networks. In a linear network, all layers have only
one reference. If a coming allocation request for tensor is 400MB, for
the linear network, it can serve the request because the coalesced re-
gions from the released tensors have enough space. However, for the
nonlinear network, though there is 200MB and 300MB empty list, it
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Figure 9: The system architecture of Dymem. Con-
structor performs graph analysis. Scheduler manages
prefetch/offload operations. Allocator handles tensor
allocation/deallocation.

can not serve the incoming request because they are distributed at
two separate lists. Between these two fragmented spaces, the allo-
cated tensor resides on the GPU longer than other tensors because
multiple layers have dependencies on it. Fragmentation happens
at the virtual address level. It is not allowed to modify the page
tables on the GPU. And it is also impossible to move data around
the GPU with negligible overhead. The best-fit algorithm requests
an additional 400MB memory to satisfy the demand. When peak
memory consumption is close to the GPU memory capacity, this
fragmentation might impact the trainability of networks.

Furthermore, from Figure 8, we can learn that the memory usage
of CONV, ACT, BN, and POOL layers can account for more than
90% of total usage. However, it is not fruitful to offload Dropout,
Softmax, and FC layers because they only require less than 1%
of the total memory. These layers require less memory but stay
longer until no more dependency. It requires us to manage the
allocation of these tensors carefully. Otherwise, it can cause further
fragmentation. Based on the above observations, an efficient tensor
placement policy should be proposed while considering both the
varied data sizes and graph dependencies.

3 SYSTEM DESIGN AND IMPLEMENTATION

The design objective of our dynamic memory manager (Dymem) is
to automatically manage the memory usage of DNNs while min-
imizing the overhead and maximizing the reduction of memory
load. Dymem is a host-side runtime that interfaces with GPU to
dynamically move, allocate, and release tensors. Figure 9 shows the
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(a) Schema of Inception-v4 network. (b) Forward pass of Inception-v4.

Figure 10: Execution order for Inception-v4 network in the
forward pass. [; represents i;;, layer. [y — {l1, Iz, I3, 4} repre-
sents that layer [y, Iy, I3, [ have dependency on layer [.

overall system architecture. In this section, we first introduce how
to perform graph analysis to construct a memory-efficient execu-
tion flow, particularly for nonlinear networks. Then, based on the
results from the graph constructor, we propose a tensor scheduler to
utilize dependency features to asynchronously offload/prefetch can-
didates with different variable sizes and resident duration. Lastly, we
implement a unified GPU memory pool and propose a contiguity-
conserving placement policy to allocate/deallocate the scheduled
tensors.

3.1 Execution Graph Construction

Algorithm 1 Execution flow for nonlinear blocks.

1: function flowConstruct(int layerId)

2 if layerID == Null then

3 return;

4 end if

5: refent++;

6 if layerld.refcnt < prevLayer.refcnt then
7 return;

8 end if

9 execFlow.push(layerId)

10: L = layerld -> get-next();
11: forl e Ldo

12: flowConstruct(l)

13: end for

14: end function

Given a nonlinear network, we need a memory-efficient ap-
proach to set up the execution order. Since cuDNN [7] implements
deep learning primitives at layer granularity, we use tensors as the
basic scheduling unit. For basic networks, during the forward prop-
agation, the results from layer,_1 can be applied as the input for
layer,. The computation flow can be regarded as a sequential pro-
cess. Only when the preceding layer is finished, then can it initiate
the next layer’s computation. This chain rule is similarly applied in
the backward pass but in a reversed order. For networks with non-
linear blocks, there are nonlinearities such as one-to-many (fork)
and many-to-one (join) connections. Depth-First-Search (DFS) algo-
rithm is used to decide the execution sequences for these nonlinear
dependencies, which is shown in Algorithm 1. Whenever there
is a fork connection, DFS is applied to explore all the executable
layers until it reaches the join connection in the nonlinear blocks, as
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Table 1: The computation and communication time in resid-
ual block (ms).

Layer 1x1 CONV | 3x3 CONV | Join
Computation 25 76 3
Communication 66 68 X

shown in lines 7 to 8. Figure 10(a) shows the schema for Inception-A
blocks in the Inception-v4. The detailed execution order obtained
by DFS is demonstrated in Figure 10(b). In this example, the In-
ception block should be propagated in four branches in both the
forward and backward passes. In the forward pass, [y — {l1, Iz,
I3, l4} represents that output feature maps from layer ly should
reside in the GPU memory until layers Iy, Iz, I3, I are executed
because of dependencies. Similarly, during the backward pass, in
the branch Iz — I7 — I3, when I3 is being executed, layer I4 should
be prefetched from CPU memory asynchronously based on DFS.
The reason why DFS should be applied to construct the execution
graph lies in two properties: First, DFS requires less memory space
to reach the join connection node in the nonlinear blocks when
exploring the traversal path. For example, the branch Iy — I; — I3
illustrates simple dependency, in which the corresponding data for
those memory-intensive convolution layers can be released from
GPU memory sequentially. Second, inside those nonlinear blocks,
e.g., residual block and Inception grid, most layers are computation-
intensive Convolution layers. The DFS can serialize the sequences
of convolution layers in each branch, mostly.

3.2 Dependency Aware Memory Offloading
and Prefetching

After obtaining the execution graph, Dymem automatically man-
ages the offload and release operations for tensors so as to effectively
improve the overlap ratio between communication and computa-
tion. We employ two separate cudaStreams to transfer tensors
in/out of external memory asynchronously. streamcompute inter-
faces to the cuDNN handle and sequences all the computations in
the forward and backward pass. streammemory is responsible for
the tensor placement, movement, allocation, and deallocation.

3.2.1 Memory Offload. During forward propagation, if layer, is
available for offloading, Dymem first allocates a pinned memory
region in the host via cudaMallocHost(), then streammemory can
asynchronously swap feature maps from this layer via non-blocking
memory transfer. When the asynchronous offload is completed,
the cudaEvent is register to record this event. Because the input
features for CONV, POOL and ACTYV layers are read-only data
structures, we can start the offload operation for these when they
are being performed forward propagation. As for streamcompute,
layery,’s computation can be started as soon as layer,—1’s computa-
tion is completed without waiting the completion of the offload op-
eration of layery,—1. Nonlinear blocks, e.g., Residual blocks, can ben-
efit from this strategy because of the join operations do not necessar-
ily wait for the completion of tensors transfer from 1x1 CONV and
3x3 CONV, which is illustrated from the Table 1. streamcompute
guarantees the completion of computation for layery, by using the
cudaStreamSynchronize() APL. When both of these two events for
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layer, are finished, a shared queue is used to record this tensor.
The release of the tensors chosen for offloading from GPU is done
when there is no dependency for these layers in the shared queue.
An individual thread is launched to release the layer, from the
GPU memory. At the end of the forward propagation, we syn-
chronize streamcompute and streammemory to make sure that
streammemory has offloaded its feature maps. This safely ensures
that all layers chosen to be offloaded are offloaded from GPU mem-
ory before the start of backward propagation, maximizing the mem-
ory saving and improving the performance greedily. However, there
is an exception that the execution for the next layer has to be
blocked if the available memory is not enough, waiting for the
release for completed layers. In general, memory space is traded
for performance in the forward pass.

3.2.2  Memory Prefetch. In the backward pass, prefetching the of-
floaded input feature maps back to GPU can be overlapped with the
computation of backward propagation using cudaMemcpyAsync()
as well. After an asynchronous transfer for layery, is completed,
a cudaEvent is registered in the streammemory, after which the
computation can be started for this layer. The streamcompute is
synchronized with the offload event to guarantee that the compu-
tation can be safely launched with available input feature maps.
Similar to the forward pass, we only synchronize streamcompute
and streammemory at the end of backward propagation before the
next iteration. Instead of launching the prefetch operations in the
reverse order simply, we have to consider the execution order and
prefetch latency when searching for the optimal candidate layer.
Another problem is that if the prefetched layery, is too far away
from the overlapped layer, , the memory saving benefit will be
reduced because the prefetched data be reused immediately, wast-
ing the GPU memory. Jointly considering the memory saving and
prefetch latency, we propose an efficient searching algorithm to
decide the layer to be prefetched, which is shown in Algorithm 2.
Whenever there is a nonlinear block, we decide the preceding layers
based on DFS, which is similar to the forward pass. After obtaining
the layer, we restrict that no more than two Convolution layers
residing in the GPU, as is illustrated in the line 11. This is because
Convolution layers are computation intensive. Prefetching these
layers too early will under-utilize the GPU resources. As long as it
is not convolution layer and not available yet in the GPU memory,
it can be chosen as the candidate, as is shown in line 14. This is
because other layers require shorter computation time compared
with Convolution layers. This feature can gain performance im-
provement because the prefetch latency can be well hidden by the
computation time.

3.3 Contiguity-conserving Memory
Management

In this section, we first define tensor mobility based on the varied
data size and dynamic dependencies. Then we propose Group Ten-
sors By Mobility (GTBM) as the placement policy to classify tensors
before allocation. We further implement a unified memory pool,
consisting of main space and incremental space, to host different
tensors so as to achieve lower memory fragmentation.
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Algorithm 2 Searching the candidate layer.

1: function searchPrefetchLayer(int layerld)

2 n = 0;

3 if layerld-> type == CONV then

4 n++;

5: end if

6 next = flowConstruct(layerId).pop();

7 while id do

8 if next-> type == CONV && n < 2 then

9 pf.push(id); n++;

10: next-> pf = True;

11 else if next-> of && !(next-> pf) && next-> type !=
CONYV then

12: next-> pf = True;

13: pf.push(next);

14: end if

15: next = flowConstruct(next).pop();

16: end while

17: end function

3.3.1 Design Principles. In the operating system, the internal frag-
mentation is defined as the inability to satisfy an allocation request
because a suitably large contiguous block of memory is not free
even though enough memory may be free overall [11]. The scope
of internal fragmentation not only depends on the layout of free
memory nodes but the size of the request. Here we define the un-
usable free space term, Uf. It measures how much of the available
free memory cannot be used to satisfy an allocation:

TotalFree — Zi}" 2'k;
TotalFree

Up()) = )
in which j is the desired allocation (i.e., the size of the request is 2/),
TotalFree is the number of free memory nodes, 2" is the largest
request allocation that can be satisfied, and k; is the number of free
memory nodes of size 2. A term of 0 implies there is no memory
fragmentation. The term tending towards 1 implies high fragmenta-
tion, in which the request cannot be satisfied. Based on the analysis
of the best-fit algorithm in Section 2.3.2, the memory fragmentation
could increase if the contiguous and noncontiguous tensors are
both allocated to a contiguous portion of the virtual address. If
fragmentation happens, the memory pool has to grow its size so as
to satisfy the demand. In order to decrease Uy during the training,
we propose a contiguity-conserving allocation strategy. The core
idea is to provide a soft guarantee that all of the tensors having the
same dependencies or similar lifetime should be allocated in the
same region.

3.3.2  Group Tensors By Mobility. Group Tensors By Mobility (GTBM)
considers the address space as being split into three arenas. Tensors
are placed such that each arena contains tensors of the same page
mobility type. For our purposes, three mobility types are defined
as below:

e Movable tensors are from those layers who have simple
dependencies, i.e., one reference count. They can be released
after the being propagated and the released space could
coalesce with each other soon.
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e Temporary tensors are those tensors that are known to
exist for a very short period of time, such as fork connections
or tensors waiting to be joined. These tensors exist longer
than movable tensors and are not supposed to be mixed with
them.

e Reclaimed tensors are tensors from layers that are not
selected for offloading. These tensors require less memory
capacity and could be reclaimed after being propagated.

The placement policy is to group tensors of the same mobility type
within an arena of the matching type. The pseudo-code for the
grouping process is summarized in Algorithm 3. The grouping pro-
cedure for Dropout, Softmax, and FC layers are shown in the line
5, which should be classified as reclaimed tensors. For the non-
linear block shown in Figure 10, in the forward pass, layer [y has
multiple dependencies, which should be put into the temporary
tensors group. But for layers Is, I, and I, though they have only
one reference, they should be grouped as the temporary tensors
because their results will not immediately be concatenated, which
is illustrated in the line 5. However, in the backward pass, they
should be regarded as movable tensors because the results from
layers Is, I, and Ig can be consumed immediately. The release oper-
ations will be initiated when the reference number of the currently
processing layers has been decreased to zero. For example, after
forward computation of Iy is finished, the feature maps of layers Is,
I3, and Ig can be released from the GPU.

3.3.3  Unified Memory Pool. The memory manager is a host-side
interface, serving as the GPU back-end. The memory space is di-
vided into main and incremental areas. Inside the main space, the
allocation can be started from both the low and high-end available
addresses. For the memory operations, we employ the open-source
asynchronous memory allocation/release API library provided by
Nvidia CNMeM [1]. The allocation starting from the low end will
use the default cnmemMalloc() API, following the default best-fit
heuristic. For the allocation starting from high-end address, we
implement a new cnmemHighMalloc() API, pointing the starting
address to the high end. For the incremental space, we use the
default cudaMalloc() to request a new GPU memory outside of
the existing pool. Though this procedure will cause initialization
overhead, it is negligible because of the minimal proportion of these
layers in the neural networks.

For movable tensors, Dymem allocates tensor in the memory
pool via cnmemMalloc() from the low-end available address. Since
they have a simple dependency, i.e., one dependent layer, it only
resides on the GPU for one step and then will be offloaded to the
CPU memory. In the forward/backward pass, the released space
in the low-end address can always be utilized by the coming lay-
ers if the communication is well hided or the subsequent layers.
As for temporary tensors, Dymem places the coming tensors via
cnmemHighMalloc() starting from the high-end available address.
In this scenario, contiguity is conserved in the high-end address
since all of the tensors from this group have noncontiguous usage.
Inside the nonlinear blocks, the tensors that have higher reference
counts are always allocated before the ones with lower references.
So the used space can be deallocated in an order opposite to the
allocation, resulting in minimal memory fragmentation. Regarding
the incremental space, which hosts reclaimed tensors, because the
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Figure 11: The workflow of the unified memory pool. Dark
blocks represent main space and white blocks represent in-
cremental space.

backward propagation follows the reversed order of forward pass,
the allocation is from low to high-end while the deallocation is
from the high to low-end, leading to no fragmentation.

The configuration of memory pool size is a trial-and-error pro-
cess. To ensure the trainability of networks, Dymem initiates a large
enough main space for the first iteration. Based on the aggregated
consumption of memory, Dymem adjusts the memory pool size
by removing the smallest squeeze gap between the low- and high-
end regions in training, i.e., mem_size = (init — squeeze_gap) + f,
in which squeeze_gap = min{highest_avail — lowest_avail}. The
B is reserved space in case of fluctuation. If the training fails, an
additional f is provisioned.

Algorithm 3 Group Tensors By Mobility.

1: function tensorGroup(int layerId)

2 if layerld -> type == FC || layerld -> type == Softmax ||
layerld -> type == Dropout then

3 reclaim « (layerId);

4 else if layerld -> refent > 1 || !(layerld -> get-next()) then

5 temporary « (layerld);

6: else

7 movable « (layerld);

8 end if

9: end function

4 METHODOLOGY

4.1 Baselines

We choose vDNN [28] and SuperNeurons [38] as the baselines for
performance comparisons. Regarding memory management, vDNN
uses the default Nvidia CNMeM [1] library to allocate/deallocate
tensors. SuperNeurons adopts a fast heap-based GPU memory pool
utility. The core concept is to divide the preallocated pool into an
allocated list and an empty list. For these two techniques, we imple-
ment the best-fit algorithm as the memory management policy. The
execution order for the nonlinear network is not detailed in vDNN.
So we adopt the same construction, DFS, for vDNN for comparison.
We can only release tensors from GPU memory when there is no
further reference in the forward or backward passes. As for the ten-
sor scheduling policy, we implement the dynamic policy mentioned
in the vDNN paper, which automatically decides the offloading
layers employed to balance the trainability and performance of a
DNN at runtime. As for SuperNeurons, we only implement the live-
ness analysis and unified tensor management components because
recomputation for specific layers is not considered in our work.
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4.2 Optimizing Convolution Algorithm

The speed of CONV layers significantly impacts the training perfor-
mance. We implement a dynamic strategy to utilize the availability
of the GPU memory pool. The dynamism can achieve a tradeoff
between memory saving and performance gain. Since the allocation
of convolution workspace does not affect the functionality of the
training, so we prioritize the allocation for those required feature
maps, gradients maps, and weights, etc. The runtime will profile
the available memory space when it enters a new layer and incre-
ment the amount of GPU memory for workspace in a fine-grained
granularity, i.e., IMB. The runtime will stop requesting more GPU
memory for workspace if it causes failure in training. Then, the
corresponding decision is regarded as the optimal configuration for
the current state. The baselines, vYDNN and SuperNeurons, adopt
the same dynamic strategy to achieve the balance between memory
saving and performance gain. We also implement the memory-
optimal algorithm as the baseline, in which no extra workspace
memory is required for Convolution layers.

4.3 DNN Benchmarks

4.3.1 Linear Networks. First, we perform the evaluation compared
with vDNN and SuperNeurons on linear networks, VGG-16 and
AlexNet. We use the same training configurations as the published
paper [32][22]. For AlexNet, we configure the batch size as 256.
there are 23 forward steps and 23 backward steps. VGG-16 is one of
the largest and deepest DNN architecture, which has 16 CONV and
3 FC layers. It requires substantial memory capacity for trainability.
To ensure the trainability, we configure the batch size as 64 and
128. We evaluate the performance regression of the end-to-end
training and the peak memory consumption for one iteration. Since
SuperNeurons requests a fixed and large enough memory pool,
we measure memory usage in terms of aggregated memory usage
during the runtime.

4.3.2  Nonlinear Networks. We further perform the evaluation against
vDNN and SuperNeurons on two representative nonlinear net-
works, ResNet [16] and Inception V4 [34]. Specifically, we imple-
ment the basic Residual block, which has two 3x3 convolutional
layers with the same number of output channels. Each convolu-
tion layer is followed by a batch normalization layer and a ReLU
activation function. Then, the skip connection joins the output
from two convolution layers with the original input before the final
activation function. We also evaluate the performance using vari-
ous depths for ResNet, e.g. ResNet-32, ResNet-50, ResNet-101 and
ResNet-152. The difference among these networks is the number
of residual blocks. Since vDNN does not report the evaluation re-
sults for ResNet, we follow the implementation from Torch [27] to
implement the memory management policy because it is adopted
as the baseline for vDNN. For all of the above benchmarks, we use
the image dataset CIFAR-10 [21].

5 EVALUATION

Our experimental evaluation is performed on GeForce GTX TITAN
X with 12 GB GPU memory. The machine has 3.4 GHz Intel i7-3770
CPU (20 cores) and 32 GB CPU memory. The GPU communicates
with CPU via a PCle switch, which has 16GB/sec data transfer
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Figure 12: Overall GPU memory usage and normalized performance of convolution layers. The batch size of Inception V4
is 128. The batch size for ResNet with different depths are 100. Dymem(m) and Dymem(p) represent running Dymem with

memory-optimal and performance-optimal algorithms.

bandwidth. The machine is installed with Ubuntu-16.04, CUDA 9.0,
CuDNN 7.0, and g++ 5.4.0.

5.1 Reduction on GPU memory usage

Figure 12(a) summaries the aggregated memory usage among Dymem,
vDNN, and SuperNeurons for different DNNs. Because all of these
three approaches apply a layer-wise memory allocation policy, the
GPU memory usage during forward/backward pass will fluctuate
depending on the tensors chosen for offloading/prefetching. So
we use the aggregated memory to represent the maximum allo-
cated GPU memory for one entire iteration, which is the minimum
requirement to enable the trainability of the networks. From the
results of VGG-16 and AlexNet, we can see that there is no dif-
ference between these three strategies. For such linear networks,
layers are propagated sequentially. Dymem falls back to the same
best-fit algorithm, which is adopted by SuperNeurons and vDNN as
well. For VGG-16, because convolution layers dominate the training
process, leading to no difference between vDNN and SuperNeurons.
Dymem even requires nearly 250MB more memory capacity than
vDNN for AlexNet. Because Dymem aggressively prefetches more
layer’s data structure than vDNN, trading the memory space for
performance improvement, which is detailed in Section 5.2. For non-
linear networks, ResNet-50, ResNet-101 and ResNet-152 vary their
network depths by changing the combinations of for-loop residual
blocks. We can see that when the depth of ResNet is increased,
memory consumption is not linearly increased. The performance
of Dymem shows considerable scalability for different depths of
networks compared with vDNN and SuperNeurons. Specifically,
for Inception V4, the maximum memory footprint is reduced from
3650MB to 2527MB, resulting in 31% memory saving compared
with vDNN. SuperNeurons shows better performance than vDNN
to handle the tensor scheduling for Inception V4, whose inception
branches are much more complex than ResNet. However, Dymem
can still achieve 28% memory saving compared with SuperNeu-
rons by minimizing the GPU memory fragmentation caused by the
simple best-fit policy.

Figure 12(b) reports the performance of the convolution algo-
rithms of Dymem and vDNN. The performance of convolution
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algorithms can better represent the average utilization of the GPU

DRAM during the runtime. For comparison, we implement Dymen

with both memory-optimal algorithm and the performance-optimal

convolution algorithm as the baseline, in which performance-optimal
algorithm is configured to supply with enough memory to run

the fastest convolution algorithms. To demonstrate the impact of
stressed memory capacity, we especially study VGG-16 running

with 256 batch sizes. Since is impossible to train VGG-16 with this

configuration on GeForce GTX TITAN X, we employ the layer-by-
layer strategy to ensure trainability. The training time that occurred

in all convolution layers is accumulated to represent the overall

performance because the memory capacity only affects the con-
volutional performance. As shown in the figure, we can see that

the memory-optimal algorithm could result in nearly 60% perfor-
mance loss on average compared with the performance-optimal

algorithms. It is normal because no extra memory space is sacri-
ficed for performance, closing the gap between the memory-optimal

and performance-optimal configurations. Both Dymem and vDNN

achieve well balancing between memory usage and the overall per-
formance. From the results, we can see that Dymem and vDNN

reach an average of 95% and 97% throughput of the performance-
optimal. However, when the batch size of VGG-16 is configured

to 256, the average throughput is decreased to 84% running in the

vDNN. The performance is worse running in Dymem, which is

72% of the performance-optimal setting. Because Dymem prior-
itizes functionality over performance. For VGG-16, especially in

the backward pass, Dymem prefetch more Convolution layers fol-

lowing Pooling layers than vDNN, resulting in less available GPU

DRAM for workspace allocation. The minor performance loss from

the algorithm could be made up of the benefit from the overlap-

ping between computation and communication, as illustrated in

Section 5.2.

5.2 End-to-end throughput evaluation

Figures 13 present the end-to-end training throughput comparison
of Dymem to vDNN and SuperNeurons. The training throughput is
measured by the number of processed images per second. We vary
the batch sizes for different DNNs and compare the corresponding
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Figure 13: End-to-end evaluation on throughput of different
DNN models.

throughput. For linear networks, VGG-16, and AlexNet, there is not
much performance improvement over vDNN and SuperNeurons.
Because these networks are composed of simple and sequential lay-
ers. For example, VGG-16 consists of 16 convolution layers, which
are computation-intensive. The computation time is always longer
than the transfer. The propagation computation dominates the total
delay. As a result, there is no much performance benefit by remov-
ing the layer-by-layer synchronization barriers. In some cases, for
linear networks, we can see that SuperNeurons perform better than
Dymem and vDNN. Because SuperNeurons only offloads convolu-
tion layers, avoiding the communication overhead. However, for
both linear and nonlinear networks, when the batch sizes are in-
creased, SuperNeurons cannot train these networks because of the
limited memory availability. For nonlinear networks, the results
consistently demonstrate the leading throughput on ResNet-50,
ResNet-101, ResNet-152, and Inception V4. The largest throughput
improvement comes from ResNet-50, running with batch size 100,
which achieves up to 42% compared with vDNN. The performance
largely results from the improved communication/computation
ratio. This is because Dymem could better utilize the overlap of
communication and computation among layers. We can also ob-
serve that the throughput has slowly deteriorated by increasing
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Figure 14: Execution time decomposed into the overlapped
time, the non-overlapped communication time, and the non-
overlapped computation time in two networks.

batch size. This is because GPU memory can only accommodate
less network layer with wider networks, resulting in the decreased
communication/computation ratio. Less layer overlapping requires
the growing communications in more frequent tensor swapping
between CPU and GPU. Then, the runtime has to constantly offload
the current layer before proceeding to the next one.

5.3 Efficiency of dependency-aware swapping

Figure 14 plots the breakdown of the normalized execution time of
two representative nonlinear networks, Inception V4 and Resnet-
32. These two networks are training on Dymem and vDNN with
the memory-optimal configuration to avoid the impact from the
speedup of Convolution. Specifically, the time is decomposed into
the overlapped time, the non-overlapped communication time, and
the non-overlapped computation time. In this experiment, the base-
line only uses one stream, which restricts that the computation
and offload/prefetch in both the forward and backward passes are
executed sequentially. We also configure the memory-optimal algo-
rithm for these three experiments, so as to avoid the impact of the
dynamics in the convolution layers. As shown in the figures, the
overlapped time in the baseline is zero since the communication
and the computation are performed sequentially. The layer by layer
strategy adopted by vDNN can overlap the communication with the
computation to some extent by 18% and 12% for Inception V4 and
ResNet, respectively. The overlapped time in Dymem is longer than
that in the vDNN, showing that a more aggressive batching strategy
is more effective in terms of performance. As a result, compared
with the baseline, Dymem can achieve nearly up to 46% reduction
on the execution time.

5.4 Efficiency of the contiguity-conserving
policy

To study the efficiency of the proposed tensors placement policy,
we analyze the step-by-step memory usage of ResNet-32 in one
iteration running with GTBM and the default best-fit algorithms,
which is shown in Figure 15. Here, the "used" memory includes
the allocated and the free but unusable memory nodes. For vDNN,
the "used" memory counts the memory nodes from the lowest allo-
cated address to the highest available address in the memory pool.
For Dymenmn, it additionally counts the used memory nodes from
the high-end in the main space and the incremental space. In this
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Table 2: The failure rate of training with different parameter
configurations.

Memory size (MB) | 100
Training failure (%) | 5

300 | 500
0.9 0

experiment, we run ResNet-32 without batch normalization under
the batch size of 100. Specifically, it consists of 15 residual blocks.
In each residual block, there is one join and one fork connections.
Between these two connections, there are two branches, including
shortcut and residual connections. The residual connection is com-
posed of two Convolution and one Activation layers. After the join
connection, the result will be fed into one Activation layer. One
iteration requires 190 steps in the forward and backward passes.
From the result, we observe vDNN requests more GPU memory at
the end of each residual block, i.e., the join connection. Though the
occupied memory nodes have been released, the fragmented but
unfit memory nodes cause a waste of resources. Compared with
vDNN, the unifies memory pool can reduce the fragmented nodes
by reorganizing the placement. The peak memory usage occurs
in the first residual block in the backward pass, which requires
nearly 2500MB GPU memory for vDNN. But for Dymem, the peak
memory requirement is 1854MB. The proposed unified memory
pool can reduce memory fragmentation.

5.5 Sensitivity analysis of the approximation

To quantify the effect of different f5, we configure ff varying from 100
to 500MB and run ResNet-101. We initiate a large enough memory
pool, i.e., 10G (another 2GB for incremental space), for the first
iteration. Then we approximate the suitable memory pool size
based on the profiled data and f. If the training fails, the current
iteration is restarted and assigned with additional f memory space.
We obtain the average failure rate, which is shown in Table 2. Since
the DNN training remains the same execution sequences, mostly,
the approximated pool size is sufficient to serve the memory request.
In this experiment, we can see that the optimal configuration should
be 300MB, considering the memory-saving and network trainability.
The limitation of this profiling-based method is that it requires
additional memory and CPU capacities. For different networks
with different parameters, the approximation should be repeated to
find out the suitable configuration.
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6 RELATED WORK

A variety of solutions have been proposed to overcome the GPU
DRAM shortage for training deep neural networks. Lossy encod-
ings have been rigorously studied in the domain of DNN inference
and training. Network pruning techniques [14] are proposed to
reduce the model redundancy so as to reduce the memory con-
sumption. Huffman encoding [15], quantization [37] and reduced
precision [20] are also studied to reduce the model size (weights).
Network compression [10] is another important approach to re-
duce the memory usage of DNNs. However, they provide limited
opportunities for memory saving because weights are not a major
contributor to the total memory requirement. Moreover, some of
these techniques, e.g., reduced precision, might result in loss of
prediction accuracy if not carefully tuned. Gist [19] investigates
approaches to optimize the memory usage for input feature maps,
which are the dominated source of memory footprint in DNNs
training. This work is orthogonal to our approach.

SuperNeurons [38] and Chen et al. [6] introduce a recomputation
strategy to trade computation for memory saving. They consider
recomputing the output from selected layers in the forward again in
the backward pass instead of prefetching them from CPU memory
or keeping them on the GPU DRAM. However, it requires high-
level semantics on the computation graph. The overhead from
training cannot be negligible because the largest layers require
longest recomputation time. This approach works well for linear
networks but fail to exploit the memory saving opportunities. Yet,
this technique can be applied in conjunction with our work for
specific layers, e.g., batch normalization.

Model parallelism is a straightforward strategy to train deep
and large networks. DistBelief[9] distributes the network across
multiple nodes by partitioning the network so that each node only
holds a part of the the network. Tofu [39] enables the training of
very large DNN models by partitioning a dataflow graph of tensors
across multiple GPU devices. However, these techniques require
huge intra-network communications for synchronization. Another
approach is to place different layers on different devices via heuris-
tics [30] or machine learning [33]. However,operator placement
is not suitable for DNNs with a deep stack of layers. Data paral-
lelism can achieve better performance by adding more GPUs. But
the powerful GPU could suffer from sub-linear scaling because of
stragglers and costly network transfer across workers. An effective
and simple approach to reduce the memory requirement for DNN
training is to reduce the minibatch size. However, it slows down
the training process because a smaller batch size could result in
GPU underutilization [12].

vDNN [28] also proposes a prefetching and offloading technique
to transfer the data between CPU and GPU memory so as to fit
the large networks in the GPU memory. It tries to overlap commu-
nication with computation by asynchronously swapping the data
between CPU and GPU via PCle. However, it requires a synchro-
nization barrier between communication and computation for each
layer, which is safe but inefficient. It ignores the benefit from those
layers, e.g., POOL and ACT layers, which are cheap to compute.
It is a waste to wait for the slow transfer of PCle bus. SuperNeu-
rons [38] also consider memory swapping but restricts to swap only
convolution layers. None of these works take the GPU memory
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fragmentation into account when allocating the tensors on GPU.
vDNN-++ [31] proposes an approximated memory pool to reduce
the GPU memory fragmentation, which is limited to linear neural
networks only.

7 CONCLUSION AND FUTURE WORK

With the deep neural networks going wider and deeper, there is a
need to effectively schedule GPU memory for DNN training to over-
come the insufficient capacity. In this paper, we focus on memory
management for the training of nonlinear DNNs. We propose the
runtime to adopt the layer-wise graph analysis and dependency-
aware offloading/prefetching strategy to improve the throughput
of DNN training. Furthermore, we design a Group Tensors By Mo-
bility (GTBM) placement policy to allocate tensors on the proposed
unified memory pool for data structures with varied data sizes and
dynamic dependencies, so as to reduce the GPU memory fragmenta-
tion in the training. Compared with the state-of-art vVDNN, for linear
networks, there is no much performance difference. For nonlinear
networks, our proposed solution can achieve memory saving for In-
ception V4 by up to 31%. The proposed dependency-aware approach
can improve the end-to-end training throughput for ResNet-50 by
up to 42%. The experiments also show that Dymem can achieve bet-
ter scalability for nonlinear networks with various network depths.
Currently, the proposed solution only supports GPU memory op-
timization for neural networks with a static dataflow graph and a
fixed shape of the input, i.e., DNN. In the future, we are going to
extend our work to support dynamic neural networks, whose data
samples have variable shapes and the computation graph topology
depends on input or parameter values, e.g., RNN and LSTM.
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